skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stankovic, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Knowing the object grabbed by a hand can offer essential contextual information for interaction between the human and the physical world. This paper presents a novel system, ViObject, for passive object recognition that uses accelerometer and gyroscope sensor data from commodity smartwatches to identify untagged everyday objects. The system relies on the vibrations caused by grabbing objects and does not require additional hardware or human effort. ViObject's ability to recognize objects passively can have important implications for a wide range of applications, from smart home automation to healthcare and assistive technologies. In this paper, we present the design and implementation of ViObject, to address challenges such as motion interference, different object-touching positions, different grasp speeds/pressure, and model customization to new users and new objects. We evaluate the system's performance using a dataset of 20 objects from 20 participants and show that ViObject achieves an average accuracy of 86.4%. We also customize models for new users and new objects, achieving an average accuracy of 90.1%. Overall, ViObject demonstrates a novel technology concept of passive object recognition using commodity smartwatches and opens up new avenues for research and innovation in this area. 
    more » « less
  2. Wearable devices like smartwatches and smart wristbands have gained substantial popularity in recent years. However, their small interfaces create inconvenience and limit computing functionality. To fill this gap, we propose ViWatch, which enables robust finger interactions under deployment variations, and relies on a single IMU sensor that is ubiquitous in COTS smartwatches. To this end, we design an unsupervised Siamese adversarial learning method. We built a real-time system on commodity smartwatches and tested it with over one hundred volunteers. Results show that the system accuracy is about 97% over a week. In addition, it is resistant to deployment variations such as different hand shapes, finger activity strengths, and smartwatch positions on the wrist. We also developed a number of mobile applications using our interactive system and conducted a user study where all participants preferred our unsupervised approach to supervised calibration. The demonstration of ViWatch is shown at https://youtu.be/N5-ggvy2qfI. 
    more » « less
  3. As various smart services are increasingly deployed in modern cities, many unexpected conflicts arise due to various physical world couplings. Existing solutions for conflict resolution often rely on centralized control to enforce predetermined and fixed priorities of different services, which is challenging due to the inconsistent and private objectives of the services. Also, the centralized solutions miss opportunities to more effectively resolve conflicts according to their spatiotemporal locality of the conflicts. To address this issue, we design a decentralized negotiation and conflict resolution framework named DeResolver, which allows services to resolve conflicts by communicating and negotiating with each other to reach a Pareto-optimal agreement autonomously and efficiently. Our design features a two-step self-supervised learning-based algorithm to predict acceptable proposals and their rankings of each opponent through the negotiation. Our design is evaluated with a smart city case study of three services: intelligent traffic light control, pedestrian service, and environmental control. In this case study, a data-driven evaluation is conducted using a large dataset consisting of the GPS locations of 246 surveillance cameras and an automatic traffic monitoring system with more than 3 million records per day to extract real-world vehicle routes. The evaluation results show that our solution achieves much more balanced results, i.e., only increasing the average waiting time of vehicles, the measurement metric of intelligent traffic light control service, by 6.8% while reducing the weighted sum of air pollutant emission, measured for environment control service, by 12.1%, and the pedestrian waiting time, the measurement metric of pedestrian service, by 33.1%, compared to priority-based solution. 
    more » « less
  4. Predictive monitoring—making predictions about future states and monitoring if the predicted states satisfy requirements—offers a promising paradigm in supporting the decision making of Cyber-Physical Systems (CPS). Existing works of predictive monitoring mostly focus on monitoring individual predictions rather than sequential predictions. We develop a novel approach for monitoring sequential predictions generated from Bayesian Recurrent Neural Networks (RNNs) that can capture the inherent uncertainty in CPS, drawing on insights from our study of real-world CPS datasets. We propose a new logic named Signal Temporal Logic with Uncertainty (STL-U) to monitor a flowpipe containing an infinite set of uncertain sequences predicted by Bayesian RNNs. We define STL-U strong and weak satisfaction semantics based on whether all or some sequences contained in a flowpipe satisfy the requirement. We also develop methods to compute the range of confidence levels under which a flowpipe is guaranteed to strongly (weakly) satisfy an STL-U formula. Furthermore, we develop novel criteria that leverage STL-U monitoring results to calibrate the uncertainty estimation in Bayesian RNNs. Finally, we evaluate the proposed approach via experiments with real-world CPS datasets and a simulated smart city case study, which show very encouraging results of STL-U based predictive monitoring approach outperforming baselines. 
    more » « less
  5. IEEE (Ed.)
    Sensing is becoming more and more pervasive. New sensing modalities are enabling the collection of data not previously available. Artificial Intelligence (AI) and cognitive assistance technologies are improving rapidly. Cyber Physical Systems (CPS) are making significant progress in utilizing AI and Machine Learning (ML). This confluence of technologies is giving rise to the potential to achieve the vision of ambient intelligence. This paper describes some of the main challenges and research directions for ambient intelligence from a CPS perspective. Index Terms—Ambient Intelligence, Cyber Physical Systems, Cognitive Assistance, Intelligent Systems 
    more » « less